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and the corresponding hexaphenylethane derivative: a new
electrochromic pair exhibiting dynamic redox properties
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Abstract—The extremely long C—-C bond [1.696(3) A] in the colorless dispiroacenaphthene-type hexaphenylethane is cleaved readily
upon electrochemical transformation into the orange colored naphthalene-1,8-diylbis(acridinium), in which the two cationic units
are forced to overlap in a face-to-face manner exhibiting the shortest C*---C" interatomic contact of 2.927(7) A among the values

ever reported.
© 2004 Elsevier Ltd. All rights reserved.

Polyarylated Cgp:—Csps bonds are more elongated than
the standard' due to the steric repulsion? between bulky
aryl substituents, thus exhibiting special properties?
related to their reduced bond energy.* In general, they
undergo easy bond fission under homolytic®> or meso-
lytic® conditions, the latter of which makes the central
point of our novel design for the electrochromic systems
based on dynamic redox properties of hexaphenylethane
(HPE)-type electron donors.” Their weakened ‘ethane’
bonds are cleaved to give the bond-dissociated dications
upon two-electron oxidation, and the starting material
was regenerated accompanied by C—C bond formation
upon two-electron reduction of the dications with an
arylene spacer. The long C-C bonds in the neutral
HPE-donors as well as the short C* --- C" nonbonded
contacts in the dications are intriguing structural fea-
tures often observed in these redox systems, which
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prompted us to exploit one of the extreme cases by using
the naphthalene-1,8-diyl skeleton.®

The central ‘ethane’ bond of 1,1,2,2-tetraarylacenaph-
thene A would be longer than any other HPE-type
compounds due to the torsional fixation that increases
the ‘front’ strain® between aryl substituents, whereas
the two cationic parts in the dication B** are forced to
arrange in a proximity to induce the very short
C" ... C" nonbonded contact. Before the completion
of this work, Gabbai and co-workers reported very
recently'® the preparation of some derivatives of A
(Ar = 4-MeOCgH,) and B** (Ar = 4-MeOCg¢H,; CHs),
whose geometrical features are in accord with our pre-
diction described above. Here we report our own results
on 1 and 2** containing the acridine-type skeletons that
exhibit much enhanced geometrical features. The former
donor possesses one of the longest C-C single bonds
(1.70A),> and the latter dication exhibits the shortest
C" ... C" interatomic contact (2.93 A) ever reported be-
tween the two cationic moieties. Furthermore, this pair
can be interconverted reversibly thus demonstrating
the electrochromic response with vivid change in color
(Scheme 1).

9,9’-(Naphthalene-1,8-diyl)bis(acridine) 3 was chosen as
a key synthon, which would be transformed into the
corresponding dication 2°* by double quaternization.
Although many 9-arylacridines could be readily
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Scheme 1.

obtained by the reactions of aryllithiums and 10-pro-
tected 9-acridone,!! this protocol failed to afford 3 prob-
ably due to its severe steric repulsion. As shown in
Scheme 1, the reaction of 1,8-dilithionaphthalene and
10-methoxyethoxymethyl-9-acridone!? did not give the
desired 1:2 adduct 3 but the 1:1 adduct, 9-(1-naph-
thyl)acridine 4,'3 as a major product.'* Finally, by the
CuO-promoted Stille reaction'> [30mol % of Pd(PPh;),,
200mol% CuO in DMF at 100-140°C] between 1,8-
dibromonaphthalene and 9- trimethylstannylacridine
5,16 we succeeded in obtaining 3'7 in 23% yield.

The newly prepared bis(acridine) 3 is a stable yellow
crystalline material exhibiting strong green fluorescence
(536nm in CH,Cl,), which is red-shifted by more than
100nm compared with that of the corresponding
mono(acridine) 4 (423nm). The large Stokes shift in 3
(145nm) is responsible for the observed red shift, sug-
gesting that the two acridine units are arranged in a
face-to-face manner suitable for excimer formation. In
fact, the X-ray analysis'® of 3 revealed the parallel
arrangement of the chromophores (Fig. 1) with the clos-
est nonbonded contact of 2.993(3) A between the two
C9 carbons of acridine units. This value is much shorter
than the sum of vdW radii (3.40A),'° although much
closer C,—C, contacts were found between the bridge-
head carbons in the highly strained cyclophanes.?°

Upon treatment with a large excess amount of MeOTf
in the presence of 2,6-di-tert-butyl-4-methylpyridine in
CH,Cl, at room temperature, 3 was transformed into
orange crystals of 2** (OTf ), salt'” in 65% yield. In
contrast to 10-methylacridinium that emits fluorescence
with very high quantum yield (¢; = 1.00),”' 2°* does not
act as a fluorophore. This observation is in accord with

Figure 1. Molecular structure of 3 determined by X-ray analysis at
—120°C. This molecule is C,-symmetric in crystal and the twisting
angle about the naphthalene and acridine units is 75.6°. The averaged
interplanar distance between the two acridine units is 3.29 A (dihedral
angle: 14.5°).

the very low @ of 10-methyl-9-(1-naphthyl)acridinium

= (0.015 in CH,Cl,),?? in which the fluorescence of
acridinium unit is quenched by the intramolecular
charge-shift from the electron donating naphthalene
unit.”> Thus, the fluorescence spectroscopy is less
informative for the electronic interaction between the
two acridinium units in 2>*, however, such interaction
is indicated by the longer-wavelength absorptions of
2°* (end absorption: 550nm) compared with 6"
(500nm). 23 Furthermore, the enhanced electron-accept-
ing properties of 2°* [Ereel —0.07V (irrev.)] than 6"
[0.57V (rev.)] clearly show the strong electromc inter-
action®? between the two cationic parts in 2**

The X-ray analyses on the dication salts'® demonstrate
that the naphthalene-1,8-diyl skeleton in 2>* forces the
two acridinium units in a surprising proximity (Fig. 2).
Despite the electrostatic repulsion between the positive
charges, the closest contacts between the two C9 car-
bons of acridiniums [2.927(7) A in 2>* (SbCly),;
3.019(3) A in 22* (OTf™ )2] are comparable with or mar-
ginally shorter than that in the precursor 3. The former
value is the shortest C* --- C* nonbonded contact ever
reported,?*2° thus demonstrating the validity of our
molecular design.

Such a short contact in 2°* ensures the facile C—C bond
formation between them upon 2e-reduction. Treatment

of 2%* (OTf "), with Zn in THF-Et;N (10:3) afforded
dispiroacenaphthene-type HPE 1,!7 which was isolated
as stable colorless crystals in 95% yield The X-ray anal-
ysis has revealed that the newly made C,—C, bond is
extremely long [1.696(3) A],*” which is expanded_by

10% compared with the standard (Cyp—Cgpst 1. 54A).1
The small torsion angle of Cg,—C—C,—C,, in the ace-
naphthene skeleton [18.1(3)°] is indicative of nearly
eclipsed arrangement of substituents through this bond.
On the other hand, all of the franking bonds [C|—Cax,
and C,—Ca,: 1.509(4)-1.520(4) A] are similar to or mar-
ginally longer than the standard (Cy—Cgp:: 151A)1
These results clearly show that the observed expansion
of C—C, bond is mainly caused by steric factors rather
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Figure 2. Molecular structure of C,-symmetric 2> determined by X-
ray analysis of SbCl,~ salt at —120°C. The twisting angle about the
naphthalene and acridinium units is 89.5°. The averaged interplanar
distance between two acridinium units is 3.16 A (dihedral angle: 11.8°).
The corresponding parameters of 2°* in the TfO~ salt are 85.9 and
84.3°, 3.28A, and 16.8°, respectively.

than by n-o* through-bond interaction.?® Structural
optimization by the ab initio calculation (B3LYP/6-
31G*)» converged to the geometry similar to the X-
ray structure (torsion angle: 18.1° for Cg,—C1—C—Csy;
franking bonds: 1.521-1.531 A) although a much longer
length of 1. T19A is predicted for the C,—C, bond (Fig.
3).

According to the voltammetric analysis, HPE 1 exhibits
very strong donating properties [E) = +0.14V (irrev.)]
similar to  N,N,N',N’- tetramethyl -p-phenylenedia-
mine, and regenerated dlcatlonlc dye 2%t upon treatment
with 2equiv of (p-BrCgH4);N™-SbCl,~ in CH,Cl,
which was isolated as SbCl,~ salt'” in 85% yield. The
interconversion could be also realized under electro-
chemical conditions, and clean electrochromic behavior
was observed as shown in F1gure 4. Highly reversible
transformation between 1 and 2°* accompanied by C—
C bond making/breaking is quite important in under-
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Figure 3. Molecular structure of 1 determined by X-ray analysis at
—120°C. The torsion angles of Cp,—C;—Cy—Ca. are 23.9(3) and
26.0(3)°. Two 10-methylacridan units adopt the butterfly form with the
dihedral angle between two benzene rings of 19.3 and 29.4°,
respectively.

standing the reactivities involving such long bonds and
short nonbonds, and we are now trying to shed the light
on the half-bonded intermediates and their related
species.

Crystallographic data (excluding structure factors) for
the structures in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication numbers CCDC 247043-247046.
Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK [fax: +44 (0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk].
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